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A viscous/inviscid interaction method is described and has been used to calculate 
flows around four distinctly different airfoils as a function of angle of attack. It, 
comprises an inviscid-flow method based on conformal mapping, a boundary -layer 
procedure based on the numerical solution of differential equations and an algebraic 
eddy viscosity. The results are in close agreement with experiment up to angles close 
to stall. In  one case, where the airfoil thickness is large, small difficulties were 
experienced and are described. The method is shown to be capable of obtaining results 
with large flow separation and quantifies the role of transition on the lift coefficient. 

1. Introduction 
A natural procedure for calculating the pressure distribution on an airfoil requires 

the solution of inviscid- and viscous-flow equations. The viscous forces are first 
neglected and an inviscid pressure distribution determined. Boundary-layer equations 
are then solved from the stagnation point on both surfaces of the body and in the 
wake to provide distributions of displacement thickness which provide boundary 
conditions for a subsequent solution of inviscid-flow equations. This procedure is 
repeated until a converged solution of the pressure distribution is obtained. This 
iterative method provides a solution to the so-called ' weak-interaction ' problem in 
which the flow remains largely attached. The more difficult ' strong-interaction ' 
problem, in which there are significant regions of flow separation, is addressed in this 
Paper. 

For an iterative procedure to be successful, the displacement thickness must be 
determined accurately, and this involves the solution of laminar boundary-layer 
equations, the specification of transition, and the solution of equations appropriate 
to turbulent boundary layers and possibly to separated flows. While the calculation 
of laminar boundary layers depends mainly on the accuracy of numerical methods, 
the turbulent flows on the airfoil and in the wake require an accurate numerical 
method and appropriate assumptions for the Reynolds stresses. Previous investiga- 
tions have shown that our ability to calculate turbulent wall boundary layers and 
wakes is satisfactory only where strong pressure gradients and separation are absent ; 
see, for example, Cebeci & Meier (1979), Pate1 & Scheuerer (1982), and Chang et al. 
(1984). It should also be noted that, although the high angles of attack found in 
practice can lead to thick boundary layers, and possible separation, on the upper 
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surface with thin and even transitional boundary layers on the lower surface, no 
attempt to calculate such flows has been reported. 

In  recent years, strong-interaction procedures have been developed as useful 
methods for both low-speed flows about airfoils with high-lift devices and for 
transonic flows in which the interaction between a shock wave and a boundary layer 
can strongly influence the lift charactcristics. Reviews of recent works are available 
in an AGARD Symposium volume (1!)81) and Cebeci (1984). 

So far, most of the studies of the strong-interaction problem have concentrated on 
the development of methods for analysing airfoils with separation bubbles. After 
Briley & McDonald (1975) showed that the interactive boundary-layer approach 
could be used to compute transitional separation bubbles on airfoils, various 
investigators developed methods for analysing airfoils under similar flow conditions, 
making use of different numerical procedures for solving the boundary -layer equations, 
different methods for computing transition and different ways of handling the 
viscous/inviscid interaction. For example, Kwon & Pletcher (1979), Cebeci & 
Schimke (1983), Cebeci & Clark (1984). and Davis & Carter (1984) solved boundary- 
layer equations in differential form, whereas integral equations were used by Gleyzes, 
Cousteix & Bonnet (1984). To calculate transition, Kwon & Pletcher (1979) used an 
expression based on Michel’s (1951) method and the es method (see Cebeci & 
Bradshaw 1977); Cebeci et al. (1984) used the same formula for attached flows, 
and an expression given by Crimi & Reeves (1976) for flows with separation; 
Gleyzes et al. (1984) used the stability theory and, in some ways, the principles 
of the es method; and Davis & Carter (1984) used the so-called McDonald- Fish- 
Kreskovsky (McDonald & Fish 1973; McDonald & Kreskovsky 1974) model which 
is based upon the solution of the integral form of the turbulent-kinetic-energy 
equation. The coupling between the inviscid- and viscous-flow methods has also been 
achieved in different ways. For example, Davis & Carter (1984) used a semi-inverse 
technique first proposed by LeBalleur ( 1978) and Carter (1979), whereas Cebeci (1984) 
and his associates utilized the scheme advocated by Veldman (1981) and by Cebeci, 
Stewartson & Williams (1981), and Gleyzes et al. (1984) made use of an inverse method 
coupled with a local approximation to an inverse inviscid-flow method utilizing the 

(1)  
wall-transpiration model 

d 
ds 

8, = - (u, S*). 

The present study extends those of Cebeci & Schimke (1983) and Cebeci & Clark (1984) 
to calculate the flow around an airfoil at  angles of attack ranging from small to those 
corresponding to stall. The inviscid-flow procedures are described in 92. The basic 
viscous-flow equations, transformed equations and solution procedure are described 
in 93, which also considers the method of interaction with the external flow for the 
wall boundary layers and wake. Results are presented and discussed in $4 for several 
airfoils and angles of attack up to and including a stall angle. Summary conclusions 
are identified in 95. 

2. Inviscid-flow method 
The inviscid-flow method which is used here is based on conformal-mapping and 

Fourier-analysis techniques. These techniques, described in more detail by Halsey 
(1979), have a proven record of accuritoy, efficiency and generality that makes them 
well suited for the current application. 

The calculations can be divided conveniently into two nearly independent parts : 
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the transformation of the region outside the airfoil to the region outside the unit circle, 
and the determination of the flow solution in the transformed plane. The trans- 
formation is accomplished using a sequence of three conformal mappings. In  the 
first mapping, the airfoil shape is perturbed slightly to make the upper- and 
lower-surface trailing-edge points coincide. This is accomplished using a logarithmic 
mapping function and is necessary only in those cases in which the airfoil trailing 
edge has non-zero thickness. In  the second mapping, the trailing-edge corner is 
analytically removed by applying the KBrmBn-Trefftz mapping. In the final mapping, 
the resulting quasi-circular shape is mapped to a perfect circle using an iterated 
sequence of applications of the fast-Fourier-transform algorithm. 

The calculation of the flow in the transformed plane also makes use of Fourier- 
analysis techniques. The complex velocity is expanded to give an infinite series 
involving a constant and negative powers of the complex coordinate. A finite number 
of the series coefficients are determined from the specified values of the normal 
velocity component at equally spaced points around the unit circle and from a Kutta 
condition which ensures stagnation at the trailing-edge point. The appropriate values 
for the normal-velocity-component boundary conditions are determined from previous 
viscous-flow calculations, using (1). For the initial inviscid-flow calculation in the 
interaction procedure, the specified normal velocity components may be taken from 
a previous calculation or they may simply be set to zero. In  the latter case, a 
Fourier-analysis solution is not required and the classical analytic solution for flow 
over a circle is used. 

For cases in which viscous wake effects are included, the flow-calculation procedure 
is slightly more complex. In these cases, the influence on the inviscid flow is 
simulated using a source/sink distribution along the inviscid trailing streamline and 
its reflection in the unit circle, which is required for the airfoil boundary condition. 
The local source density is determined using (1). The distribution is broken into 
piecewise linear segments and the flow due to the isolated-source distribution is 
computed using standard panel-method techniques. The total-flow solution in the 
transformed plane is then computed in the manner described above. 

The major computational effort required in the inviscid-flow method is due to the 
transformations. In the viscous-/inviscid-flow interactions, it is necessary to compute 
the transformations only once, so that only the much faster flow calculations need 
to be repeated at each iteration. As a result, the computational expense due to the 
inviscid-flow calculations can be held to a minimum. 

For flow at higher angles of attack care must be taken, since the displacement 
thickness at the trailing edge can become fairly large, approaching 10 yo of the airfoil 
chord. The use of a blowing velocity on the airfoil surface produces a dividing 
streamline from the leading-edge stagnation point which approximates the edge of 
the boundary-layer displacement thickness. The inviscid flow outside this dividing 
streamline is therefore the same as that past the solid body defined by this streamline. 
However, inside this dividing streamline the inviscid flow is fictitious. In particular, 
near the trailing edge, the assumption that there is no pressure variation across this 
fictitious region becomes invalid as the magnitude of the blowing velocity v, 
increases. The approach adopted here is, therefore, to evaluate the velocity distribution 
directly on the displacement surface while still applying the blowing velocity on the 
original airfoil surface. This is accomplished by mapping the displacement surface 
into the circle plane so that the Fourier series for the velocity can be evaluated 
directly on the displacement surface. If the Kutta condition is applied at the airfoil 
trailing edge then, in general, there will be a velocity discontinuity between the upper- 
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and lower-trailing-edge pressures. Therefore, the Kutta condition is modified to apply 
at the edge of the displacement surfwe using the same points as those a t  which the 
velocity is evaluated. The condition which is applied is that the off-body pressures 
computed a t  the upper- and lower-trailing-edge points are equal. This is accomplished 
by first computing the velocities at those off-body points with the total circulation 
specified by the previous inviscid calculation. A quadratic equation is then solved 
to compute the circulation required to make these two velocities equal. The effects 
of this Kutta condition will be discussed further in 54.1. 

3. Interactive viscous-flow method 
3.1. Basic equations 

For two-dimensional external steady incompressible flows, the boundary-layer 
equations are well known and, with the concept of eddy viscosity vt and with b 
denoting 1 + V J V ,  can be written as 

The boundary conditions for flow over an airfoil in the absence of mass transfer are 

u = v = O ,  a t y = O ,  (4a) 

u+u,(x) as y +  co. (4b) 

The boundary conditions for the wake require the specification of a dividing line, 
y = 0, to separate the upper and lower parts of the inviscid flow. The normal pressure 
gradient across the shear layer is neglected and the boundary conditions become 

u + ue(z) as y + co, (5a )  

w = 0,  at y = 0, (5b)  

u + ue(z) as y +- co. ( 5 4  

In these equations the external-velocity distribution u,(x) is obtained either from 
experiment or from inviscid-flow theory. In the latter case, it is often necessary to 
consider theeffect of thedisplacement t hicknesson the calculated velocity distribution, 
and this can be done in several ways. Here, as in earlier references, we write the edge 
boundary condition, with u:(x) denoting the inviscid velocity distribution and 6u,(z) 
the perturbation velocity due to viscous effects, as 

ue(x) = .",XI + 6ue(x), (6) 

and assume that the interaction region is limited to a finite range x, < x < xb. The 
perturbation velocity 6u,(z) is determined from the Hilbert integral 

where d(u, 6*)/da is the blowing velocity. Following Cebeci & Clark (1984), we write 
(6) and (7) as n 

Ue(x) = u " , ~ )  + X ~ij(ue S*)j. (8a )  
1-1 
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Here c6, denotes the interaction-coefficient matrix, which is obtained from a discrete 
approximation to the Hilbert integral in (7). In  this form, (8a) provides an outer 
boundary condition for the viscous-flow calculation which represents the viscous/in- 
viscid interaction. It can be generalized to the form 

n 

where u:(x) corresponds to the inviscid velocity distribution which contains the 
displacement-thickness effect (S*)c computed from a previous sweep, as we shall 
discuss later. 

The presence of vt in b requires a turbulence model, and the algebraic eddy-viscosity 
formulation of Cebeci & Smith (1974) is used here. According to this formulation for 
wall boundary-layer flows, ut is defined by two separate formulas, given by 

where A = 26vu;', u7= ey , 
max 

= 1 + 5.5(y/6)6' l J  
au 

71 =Pay' 

The condition used to define yc is the continuity of the eddy viscosity; from the wall 
outward (9a) is applied until its value is equal to the one given by (9b). 

In (9), ytr is an intermittency factor which accounts for the transitional region that 
exists between a laminar and turbulent flow. It is given by 

Here xtr is the location of the start of transition and the empirical factor G is 

where the transition Reynolds number Rztr = (ue x/v),,. 
According to the Cebeci-Smith model, for values of Re greater than 5000, the 

parameter a in (9b) is equal to 0.0168 and, for Re less than 5000, it is given by the 
expression in Cebeci BE Smith (1974). Studies conducted by Head (1976) and Nituch, 
Sjolander & Head (1978) and the recent experimental data of Nakayama (1982) and 
Simpson, Chew & Shivaprasad (1981) and the numerical studies of Carter (1981) 
indicate that, in flows with strong pressure gradient, the value of a should also be 
changed when R, > 5000. Head and his associates recommend that a in (9b) be given 

a = a e s W ,  (124  
by 

where aeq = 0.002094+0.02672[l-exp (-0.1163G)], (12b) 

G = 4.8285 (n+ 1.0717)4+ 1.8438, (124 

6* dp n=-- 
7, dx' 
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(5 - 4r)  
F =  I- (3 - 2 r )  ( r  < I ) ,  

( r  > 1) .  21.- 1 

I n  (12e) and (12 f ), r represents the ratio of the local rate of growth of the boundary 

They also suggested that the intermittency term y in (10) be replaced by 
layer to the rate of growth of the corresponding equilibrium layer. 

where /3 is a function of shape factor H. 
Simpson et al. (1981) suggest that  

a = 0.0168/F2.5. (13a) 

Here F denotes the ratio of the product of the turbulent energy by normal stresses 
to that by shear stress evaluated a t  the location where shear stress is maximum, that 
is 

_ _  
Before (13a) can be used in (9b), an additional relationship between ( U ’ ~ - V ’ ~ )  and 

(-m) a t  ( is needed. Here we assume that the ratio in (13b), 
_ _  u’2 - vj2  

= i371,,,,,. 
is a function of R, = T ~ / ( - = ) ~ ~ ~  which, according 
( 1982), can be represented by 

6 ’= 1 +2R,(2-RT) 

(134  

to the data of Nakayama 

for RT < 1 .O, as shown in figure 1 .  For R, 2 1 .O, we take /3 to be 

Introducing the above relationships into the definition of F, we have the following 
expression for a, according to (13a), 

where /3 is given by (13d) and (13e). This expression is used here although further 
studies are clearly required t o  evaluate its range of validity. Work on this is in 
progress. 

The eddy-viscosity formulation givcn by (9) should be modified for the wake 
calculation. The wake can be separatod into two regions, the first of which is close 
to the trailing edge in which the flow is adjusting to the sudden elimination of the 
wall boundary condition a t  the trailing edge. Further downstream, in the far-wake 
region, Townsend (1956), after examining some early measurements in the wake of 
cylinders, suggested that 

V t  = o.o3zU,e, 



Airfoils with separation and the resulting wakes 329 

0 0.2 0.4 0.6 0.8 1.0 

R, = T w A  - i a n a x  

FIQURE 1.  Relation between B and R ,  according to the experimental data of Nakayama. 

where 0 is the momentum thickness 

O = S m  -m E ( 1 - t ) d y .  U e  

Equation (15) was later confirmed by Rodi (1975) from a survey of several sets of 
data and by Narasimha & Prabhu (1972) in more recent experiments. In  the near 
wake, on the other hand, one would expect that the eddy viscosity should be close 
to that for the wall boundary layers near the trailing edge, while asymptotically 
approaching the far-wake expression downstream. Following the study reported by 
Chang et al. (1984), we have used the expression 

(17) v, = v, + ( vte - v,) e-Bl, 

B, = (Z-zte)/208te, 

where vte is the eddy viscosity at the trailing edge calculated from (9), 

and v, is the eddy viscosity for the far wake given by the maximum of vW1 and v,, 
defined by 

Here the subscript 1 denotes the lower wake and u the upper wake. The location of 
ymin corresponds to u = urnin. It should be noted that expression (18) for the far wake 
is different from that suggested by Townsend (1956) so that it can apply to 
asymmetric wakes in which the velocities at  the upper and lower edges could be 
different. In  addition, the displacement thickness was used as the lengthscale instead 
of the momentum thickness because it was found by Chang et al. (1984) that it gave 
better results for wakes subject to adverse pressure gradients. 

3.2. Transformed equations 
Equations (2) and (3) may be solved in the forms presented in the previous section 
or they may be expressed in other forms which are more convenient and accurate 
for solution. Here, as in Cebeci & Schimke (1983), in the early stages of the flow, we 
use the Falknel-Skan transformation 

?1= (%)t Y, 
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With primes denoting differentiation with respect to 7, (2) and (3) and their 
boundary conditions on the airfoil can be written in the following form 

(by)’ + ?j(m + 1)f.f” + rn[ 1 - (f ’)2] = x (f ’ (20) 

7 = 0 .  f = f ’ = O ,  (21 a )  

7 = Te. f ’ =  1 .  (21 b)  

Here $ is the usual definition of the stream function that satisfies the continuity 
equation 

and m is a dimensionless pressure-gradient parameter, 

x du m = -3 
u, dx ’ 

This transformation provides the generation of initial conditions at  the stagnation 
point of the airfoil and allows the calculations to be performed economically and 
accurately around the leading edge, where the governing equations are being solved 
for the prescribed external-velocity distribution. For interactive boundary-layer 
calculations, where u,(z) is not known, a constant reference velocity uo is used in the 
transformation 

(24) 

In terms of these new variables, (2) and (3) and their boundary conditions can be 
written in the form : 

Y = (2)‘ - y, lj = (U,UX)!F(X, Y). 

(264 

Y = Ye, F’ = u ,  W-Ett((YeW-F) = gt. (26b) 

On the airfoil Y = 0, F =  F = 0, 

In the wake Y = - Y e ,  F ’ = w ,  (274  

where 

Here w denotes the dimensionless external velocity u,/uo and the parameter gi,  which 
results from the discrete approximation to the Hilbert integral (7), is given by 

where 
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The expression for gs on the wake is nearly identical to that for the airfoil, (28), except 
that now (29) is given by 

[w( Ye- Y-,)-(F,-F-,)]. (30) 

In the calculation of gz on the wake an additional simplification is introduced in 
which the interaction region [x,, xb] used in ( 7 )  is confined to the wake region itself. 
The effects of the airfoil boundary layer on the wake are fully accounted for after 
each complete sweep when the external velocity distribution is recomputed. 

3.3. Solution procedure 

The numerical solution of the system of equations given in the previous section for 
both the standard and interactive methods is obtained with Keller’s box method. This 
is an efficient, second-order finite-difference method extensively used by Cebeci and 
his associates for a wide range of flows, as discussed in Bradshaw, Cebeci & Whitelaw 
(1981). The description of the standard method is given in that reference as well as 
in Cebeci BE Bradshaw (1977). The general features of the inverse method, which makes 
use of the Mechul-function formulation, are also described for wall boundary layers 
in Bradshaw et al. (1981). As in previous studies the FLARE approximation is employed 
in which the convective term aP’/ax is set equal to zero in the recirculating region, 
and no attempt was made to improve the accuracy of the solutions resulting from 
this approximation. 

The solution procedure for the wake flow is novel and is described in the following 
paragraph. In general, airfoil wakes are considerably more difficult to calculate than 
wall boundary-layer flows, since at higher angles of attack they are strongly 
asymmetric and may involve the mixing of a thick separating turbulent boundary 
layer with a thin, possibly laminar, boundary layer. The change of boundary 
conditions from no slip on the body to smooth flow on the wake dividing streamline 
can cause numerical difficulties. We observe from (27c) that the solution of (25)  for 
two wake-edge quantities, F, and F-,, both of which can be large, may affect the 
rate of convergence of the solution. In  addition, the calculation of wakes with various 
degrees of flow separation and the use of the FLARE approximation for such flows has 
not previously been explored. 

As in the solution of wall boundary-layer flows by Keller’s method, we write (25) 
as a first-order system. For this purpose we let 

and write (25) as 

dx 

In order to obtain stable solutions to the above equations and to reduce their 
sensitivity to the boundary conditions which involve F, and F-,, we make use of the 
Mechul-function formulation and denote F-, by s. Since both s and w are functions 
of x only, we write 

s’ = 0 

and w’ = 0. 
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Y = Y-,, u = w, s = $Ye, (32a) 

Y = O ,  F = O ,  (32b), 

(324 

Y =  Ye, u = w, 1. 
w - z ~ ~ [ u ’ (  ye- Y - , ) - ( F - S ) ]  = gi.J 

The system of (28) and (29) can now be solvea by the proceuure described in 
Bradshaw et al. (1981). After the finite-difference approximations to (31) and (32) 
are written, the resulting nonlinear algebraic system is linearized by Newton’s method 
and the linear system is then solved hy the block-elimination method. 

4. Results and discussion 
The first step in the solution procedure requires the calculation of the inviscid-flow 

equations for the known airfoil shape, angle of attack and free-stream velocity. With 
the resulting pressure distribution, thc. laminar-boundary-layer equations are solved 
from the leading edge along both surfaces for a short distance. The standard 
boundary-layer approach is replaced by the inverse approach and is used to calculate 
laminar as well as turbulent flows with separation, with transition location either 
specified or computed by an empirical formula. The calculations include both 
wall-boundary-layer and wake flows. In general, at  lower angles of attack we use 
approximately 60 x-stations, each on the upper and lower surfaces of the airfoil, and 
30 in the wake. At  higher angles of attack, the number of x-stations on the upper 
surface is increased to around 80, while the number of stations on the lower surface 
and wake remains unchanged. The point distribution on the airfoil is chosen such that 
the distribution is fine near the leading and trailing edges and somewhat coarse in 
between. The interaction coefficients on the airfoil are computed from the specified 
distributions of x-stations. 

As the two wall boundary layers merge into a wake, the boundary conditions change 
suddenly from the no-slip conditions in which u = 0 at y = 0 to a finite velocity on 
the dividing streamline in the wake. I n  order to account for this ‘jump ’, it  is necessary 
to use very small step sizes immediately downstream of the trailing edge. Based on 
the mixing-length theory for the wall boundary layers, Burgraff (1974) obtained the 
centreline velocity UJX) for turbulent flow downstream of a flat plate as 

u,(x) = 0.l542@5+O(E3). (33) 

Here = (S-Z,)~ with q, = 1 at tht. trailing edge and R, is the Reynolds number 
based on the plate length. It is seen that a step size 

AX = RiZ (34) 

corrresponds to a 15% increase in the centreline velocity over the first step. For 
R, = los, the corresponding Ax is around 0.00025. In all the wake calculations, we 
have used (34) as the criterion to determine the first step size. 

There are several empirical methods for computing transition on airfoils, such as 
those based on Michel’s correlation method (1974) and the ee method based on the 
linear stability theory. Both methods produce results which are satisfactory for most 
airfoil flows without separation, but Michel’s method is not valid for flows with 
separation while the extension of the t b 8  method for such flows has not been explored. 
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FIQURE 2. Comparison of on-body (- - -) and off-body (-) Kutta condition 
- GA(W)-1 airfoil, a = lo", R, = 5.7 x lo6. 

An empirical method has been proposed by Crimi & Reeves (1976) to represent 
transition in a separation bubble, but it has not been verified for flows with large 
separation. A common procedurs in calculating transition in flows with separation, 
especially flows a t  higher angles of attack, is to assume that laminar separation is the 
transition location. 

In the present paper we use Michel's method and compute transition from the 
following formula given in Cebeci & Bradshaw (1977) : 

Ro = 1.174 ( 1+- 2yr) RO.46 (35) 

When flow separation takes place upstream of the transition location predicted by 
(35) then transition is assumed to occur. This choice, while satisfactory for high- 
Reynolds-number flows, is not a good one in general since the laminar separation point 
is independent of the Reynolds number, but for low-Reynolds-number flows, where 
experiments indicate large separation bubbles, the transition location is well within 
the bubble. 

4.1. Numerical features of the method 
In $2 it was stated that the calculation of the potential-flow solution required the 
use of an off-body velocity evaluation in which both the Kutta condition and the 
pressures are evaluated on the edge of the displacement thickness. Figures 2 and 3 
provide a comparison between computed pressure distributions obtained using 
on-body and off-body evaluations. These results were obtained for the GA(W)-1 
airfoil for R, = 5.7 x lo6. Figure 2 shows the pressures for a = 10' for which the flow 
is separated over the last 5 % of the upper surface, and the trailing-edge displacement 
thickness is about 2 % of the airfoil chord. Under these conditions the effect of the 
off-body Kutta condition is relatively minor, the only noticeable differences occurring 
very close to the trailing edge. As the angle of attack increases, the effects become 
more significant. Figure 3 shows the computed pressures for a = 15" in which the 
separation region extends over the last 15% of the airfoil, with a trailing-edge 
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-8.0 r 

FIGURE 3. Comparison of on-body (- - -) and off-body (-) Kutta condition 
- GA(W)-1 airfoil, a = 15", R, = 5.7 x lo8. 

displacement thickness of about 3% chord. For this case, i t  can be seen that the 
velocities evaluated on the airfoil surface give some undesirable pressure gradients 
in the trailing-edge region, which are avoided through the evaluation of the velocities 
on the displacement surface. 

In  order to increase the rate of convergence of the viscous/inviscid cycles, an 
over-relaxation scheme has been incorporated. This scheme makes use of a relaxation 
formula similar to that which Carter ( 1979) used t o  update the mass flux. After each 
sweep the computed blowing velocity is updated using the formula 

where w",x) is the blowing velocity computed from the current displacement thickness 
and V",+'(x) is the modified distribution which is used to compute the new inviscid 
velocity. In  this equation, ueV is the cxternal velocity distribution computed by the 
inverse boundary-layer solution and uCi is the velocity computed by the previous 
potential-flow solution. Figures 4 and 5 illustrate the effect of the relaxation 
parameter w on the rate of convergence of the solution for the flow over the NACA 
0012 airfoil, for a = 10" and R, = 6.0 x lo6. Figure 4 shows the computed c, after 
each iteration without acceleration (w = 0 ) ,  and with acceleration (w = 2). The 
corresponding upper-surface and u-ake-displacement-thickness distributions are 
shown in figure 5. 

Another effective way of improving the rate of convergence is provided by 
including some approximation to th(. viscous effects in the original potential-flow 
solution rather than starting from a purely inviscid velocity distribution. This is 
accomplished here by taking an initial displacement thickness from a converged 
solution at a lower angle of attack. Figure 6 shows the computed c, at a = 10" using 
an initial solution computed for a = 9'. Comparison with figure 4 shows that the use 
of a non-zero starting solution significantly reduces the number of iterations required 
for convergence. Figure 7 shows the displacement thickness computed on the NACA 
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FIGURE 5. The distribution of displacement thickness along the upper surface 
and wake - NACA 0012 airfoil, OL = lo", R, = 6.0 x lo6. 

0012 airfoil using this approach. In each case the converged solution required fewer 
than 10 iterations. 

The relative importance of calculations in the wake at high angles of attack is 
demonstrated by figures 8 and 9. Figure 8 shows the computed separation location 
on the airfoil. When the wake is included, separation is encountered for angles of 
attack greater than 1l0,  and attempts to obtain results without consideration of the 
wake led to erroneously large regions of recirculation. Figure 9 shows that the 
difference in displacement thickness at  the trailing edge is negligible for a = lo", but 
more than 30 % for a = 16". 
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FIGURE 7. The displacement thickness distributions along the upper surfaces 
and wakes - NACA 0012 airfoil, R, = 6.0 x lo6. 

I n  order to perform the calculations in the presence of separation, the FLARE 

approximation was used and proved to be satisfactory when the separation region 
was small. As the extent of the separation region increased an additional iterative 
scheme, based on the homotopy continuation method, was introduced at the start 
of the wake calculation. Under this scheme an initial velocity profile a t  the trailing 
edge was defined by 

and the boundary-layer solution was computed at the first point on the wake with 
n, = 0. Here uref corresponds to a non-separating velocity profile constructed some- 
what arbitrarily from the separated velocity profile a t  the trailing edge. This solution 
was then repeated with n = 0.50 and 1.0 until the solutions converged. This 
procedure was applied for each velocity profile in the wake with separation. This pro- 
cedure was necessary for angles of attack greater than 15". Attempts to avoid the 
problem by approaching from lower angles of attack with smaller increments of 
angle were unsuccessful. 

u = urep+n(u-uref), n = 0,050,  1.0, (37) 
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airfoil, 

4.2. Comparison with experiment 
Calculations have been performed for several airfoils and are presented in the 
following paragraphs in a sequence which corresponds to the complexity of the flow. 
Thus the first results are presented for a symmetrical airfoil, NACA 0012, at angles 
of attack up to and including stall. The second airfoil, NACA 4412, has camber, and 
the measurements again correspond to angles of attack up to and including stall. 
Finally, results are presented for two aft-loaded airfoils, GA(W)-1 and GA(W)-2, 
which are 17 % and 13 % thick respectively. These airfoils have been investigated for 
angles of attack up to 16". In all cases, the chord Reynolds numbers imply that 
transition can play an important role, and it was treated here in the manner described 
previously. 
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Results for the NACA 0012 airfoil are shown in figures 10-13. Figures 10 and 11 
show the computed velocity profiles on the airfoil and in the wake at a = 16". The 
computed lift and drag curves are compared with experimental measurements 
(Abbott & von Doenhoff 1959) in figures 12 and 13. As can be seen from figure 12, 
the calculated results are in very good agreement with measurements up to a = 15". 
The calculations suggest that  stall ocwrs for a beyond 19", whereas the experiments 
indicate stall for a > 16". As shown in the figure, a very small adjustment to the 
location of transition results in calculations of stall angle in accord with measurements. 
To further elaborate on this point and to show the role of transition, table 1 presents 
calculated results for three angles of attack. Those in table 1 (a)  were obtained for 
a = 6" with the transition location computed from (35). As can be seen from the values 
of c1 and displacement thickness at the trailing edge, movement of the transition 
location by 2 Yo of chord has a negligible effect. 

Location of transition at x / c = O . O 7 8 ,  however, leads to  a breakdown in the 
solutions for reasons consistent with those found by Cebeci & Schimke (1983). In an 
adverse pressure gradient, as in this case, for the solutions to exist it appears that 
transition must occur upstream of some limiting location. 

The same phenomenon is evident in table 1 ( b ) ,  which corresponds to a = 12" and 
a much higher lift coefficient. In  this case, transition was assigned to the location 
corresponding t o  laminar separation since (35) was inappropriate. A small adjustment 
to the location of transition has a small cffect on lift. I n  these tables, negative values 
of x / c  imply that the point is on the geometric lower surface of the airfoil. Movement 
of transition to x / c  = 0.0170, as with a = 6", causes the solutions to break down. In  
contrast, the results for a = 17" shown on table 1 ( c )  indicate that the lift coefficient 
is strongly dependent on the location of transition. In  this case the extent of the region 
of trailing-edge separation is large, and becomes larger as the transition location is 
moved upstream. Consistent with this result, the displacement thickness a t  the 
trailing edge increases and the lift coefficient decreases as the transition location 
moves upstream. 
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(a) a = 6". Experimental value of c, = 0.65. Transition computed from (35). 

0.031 (fixed) 0.625 0.009 1 
0.052 (computed) 0.628 0.0089 

0.078 (fixed) - - 
0.070 (fixed) 0.633 0.0084 

(b) a = 12'. Experimental value of c1 = 1.29. Transition location corresponds to laminar 
separation. 

($)sep 

0.965 - TE 
0.0025 (fixed) 1.283 0.0172 0.986 - TE 
0.0083 (computed) 1.286 0.0167 0.986 - TE 
0.0170 (fixed) - - - 

(c) a = 17". Experimental value of c1 = 1.42. Computed transition location corresponds to 
laminar separation. 

C1 

1.270 0.0195 
6 ) t r  

-0.0030 (fixed) 

(+)sep 

0.56 - TE 
(:)tr 

-0.0173 (fixed) 
-0.00925 (fixed) 1.514 0.0737 0.60 - TE 
-0.00250 (fixed) 1.573 0.061 5 0.66 - TE 

0.000493 (computed) 1.669 0.0453 0.77 - TE 

TABLE 1. Effect of transition on the flow properties of an NACA 0012 airfoil for R, = 6 x lo8 

Cl (%)te 

1.502 0.076 8 

Figure 13 shows calculated and measured variations of total drag coefficient versus 
lift coefficient. The discrepancies increase with angle of attack and are undoubtedly 
due in part to measurement accuracy. In addition, the accuracy of the calculations 
in the wake region requires further cxamination of numerical uncertainties and of 
those due to  the neglect of normal pressure gradient. 
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theory; 0, data of Wadcock (1978); 0, data of Abbott t von Doenhoff (1959). 

In the experiments of Wadcock (1978) andColes & Wadcock (1979), a flying hot-wire 
arrangement was used to measure the velocity characteristics of the flow around an 
NACA 4.412 airfoil at angles of attack up to that corresponding to maximum lift. The 
results in figures 14-16 show the experimental and computed lift and drag curves 
and the pressure distribution respectively. Figures 14 and 15 were obtained with 
transition locations corresponding both to the procedure described earlier and to 
that obtained by the tripping arrangement of the experiment. The measured and 
calculated values of c1 are in close agreement up to 01 = 12", with those corresponding 
to experimentally determined transition in slightly better agreement. The drag 
curves, shown in figure 15, agree fairly well at low values of c1 and poorly at  higher 
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FIGURE 17. Variation of c, with a - NASA GA(WA)-1 airfoil, R, = 5.7 x lo6. 
_ _ _  , inviscid; -, interactive theory; 0, experimental data. 

values. It should be noted, however, that two different sets of experimental data at 
slightly different Reynolds numbers differ significantly. The results in figure 16 con- 
firm the close agreement between measurements and calculations of the distribution 
of pressure coefficient. It is clear that the inclusion of viscous effects influences the 
pressure distribution considerably in the leading- and trailing-edge regions. 

The measurements of McGhee & Beasley (1973) were obtained for the flow around 
the 17 % thick NASA GA(W)-1 airfoil as a function of angle of attack and Reynolds 
number. Results were obtained with natural transition and with 0.25cm wide 
transition strips located at 0.0%. They are shown in figures 17 and 18 in terms of 
lift coefficient and drag coefficient and agree well with calculations up to 01 = 16'. 
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FIGURE 19. Comparison of inviscid and boundary-layer edge velocities at the 
trailing edge - GA(W)-1 airfoil, R, = 5.7 x 10'. 

Perhaps due to the thicker airfoil, and much increased displacement thickness at the 
trailing edge, some difficulties were experienced in performing the calculations beyond 
13O, and no attempt was made to extend them to angles greater than 16'. The nature 
of the difficulties encountered is illustrated by figure 19, which plots the computed 
external velocity at the trailing edge against angle of attack. This figure shows the 
velocities computed by both the potential-flow and the boundary-layer solutions. As 
the solution converges, these two values should agree. The level of agreement seen 
here below a = 13' is very good and is consistent with that observed on the previous 
two airfoils at all angles of attack. For this airfoil, however, the agreement 
deteriorates at the larger angles. 

Figures 20-22 compare results for the present method for the 13 yo thick GA(W)-2 
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airfoil with the experimental data of McGhee, Beasley & Somers (1977). The pressure 
distribution, shown in figure 20 for a = 12", agrees well with the experimental data, 
showing that the present interactive theory can give a good prediction of the viscous 
effect. The lift-curve slope is shown in figure 21, from which it can be seen that the 
present method gives good agreement up to about a 16" angle of attack. Results 
obtained by Melnik & Brook (1986) using the GRUMFOIL program agree well with the 
experimental data up to about loo, after which there is some deviation, perhaps due 
to the nature of their boundary-layer method or their treatment of the wake. The 
variation of drag with lift, presented in figure 22, shows that the present method 
predicts the drag very well over the whole range considered. 

5. Concluding remarks 
The following more important conclusions can be extracted from the preceding 

sections. 
(i) The iterative procedure has been demonstrated to allow calculations of the flow 

properties around four airfoils and over a wide range of angles of attack. Comparison 
with measurements shows excellent agreement up to angles close to stall. 

(ii) The flows investigated involved large regions of trailing-edge separation, and 
calculations were extended into the wake with the assistance of a special numerical 
procedure. 

(iii) The results show that the location of transition has an increasing influence on 
the flow properties as the angle of attack approaches stall. It has also been shown 
that calculations break down with assigned transition locations which appeared to 
be unrealistic. 

(iv) Further work is required to evaluate the influence of normal pressure gradient 
and to resolve the difficulties which arose with the thickest airfoil at high angles of 
attack. 

It has also been found that the present interactive scheme is well suited for 
transonic flows. Cebeci, Clark & Chang (1986) report results for two-dimensional 
transonic flows which indicate good agreement with experiment. An adaptation of 
this scheme in a strip-theory approximation produced equally good results for 
three-dimensional transonic flows as reported by Cebeci, Chen & Chang (1986). 

In a related study reported by Mehta, Chang and Cebeci (1986), a comparison 
between the predictions of the present interacive procedure and the thin Navier-Stokes 
solutions was made for the NACA 0012 airfoil. It was found that, when the same 
turbulence model and transition assumptions were used, the predictions of both 
methods agreed well, demonstrating the validity of the use of interactive boundary- 
layer theory for flows with large regions of separation. 

The research reported in this paper was sponsored by the National Science 
Foundation, under Grant MEA 0818565. 
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